What Holfeld could not see in his solution

27

Ioannis Holfeld, *Exercitationes geometricae*, Prague, 1773, p. 27 – 28.

Solutio : Sit AN = x; NQ = y; AM = a; MB = b; erit: x: y = a: b + x. Hinc $ay = bx + x^2$; qua est aquatio ad Parabolam. Est enim a y H + 62 $= x^{2} \operatorname{H} b x \operatorname{H} \frac{1}{4} b^{2} = (x \operatorname{H} \frac{1}{2} b)^{2}.$ Fiat $x \operatorname{H} \frac{1}{2} b = z;$ erit $a y \operatorname{H} \frac{1}{4} b^{2} = z^{2}.$ Ad $a, \& \frac{1}{2} b,$ quare tertium proportionalem terminum; qui fit m; eritque $am = \frac{1}{4}b^2$; &: $ay + am = z^2$. Sit y + m = u; erit $au = z^2$; quæ est æquatio fumpliciffuna ad Parabolam.

PROBLEMA 24.

32. Datis duabus rectis AM, MB, productaque ad libitum MB in O, fumatur a puncto A recta AR æqualis MO; quæritur locus interfectionum rectarum RB, AO.

Solutio: Sit AN = x; NQ = y; AM = a; MB = b; erit x: y = a: $b \neq BO$; igitur: BO = $\frac{ay-bx}{x}$. Hinc: $RA = b + \frac{ay-bx}{x} = \frac{ay}{x}$; & $R_N = \frac{ay + x^2}{x}$; $R_M = \frac{ay + ax}{x}$. Eft autem: $\frac{ay + x^2}{x}: y = \frac{ay + ax}{x}: b. \text{ Nam:}$ $R N: NQ = RM: MB. \text{ Igitur: } y^2 + y$ $(x-b) = \frac{bx^2}{c}$. Que equatio ad fimpliciffimam ita reducitur : $y^2 + y(x-b) + \frac{(x-b)^2}{4} =$

28

Sive: $\frac{4az^2 - ab^2}{a + 4b'} = x^2 - \frac{2abx}{a+4b}$. Sit $\frac{ab}{a+4b}$ = m; erit: $\frac{4az^2 - ab^2}{a + 4b} = x^2 - 2mx$; & $\frac{4 a z^2 - a b^2}{a + 4 b} + m^2 = x^2 - 2m x + m^2 = (x - m)^2;$ Fiat: x - m = u; erit $u^2 = \frac{4 a z^2 - a b^2}{a + 4 b} + m^2$; $& \frac{4 \, a z^{2}}{a + 4 \, b} = u^{2} + \frac{a b^{2}}{a + 4 \, b} - \frac{a^{2} \, b^{2}}{(a + 4 \, b)^{2}} =$ $(a+4b)^2$; quæ est æquatio ad hyperbolam; cujus descriptio (facta semper AR = MO) abfolvitur ductu rectarum AO, RB.

PROBLEMA 25.

35. Datis A M, MB, angulum rectum comprehendentibus, & fumpta quavis BO, ductaque AO, que fecetur in Q ea lege, ut fit OQ: QA = OB: OM, invenire locum punctorum Q.

Solutio: Sit rurfum AN = x, NQ = y, AM = a; MB = b; erit: $AQ = \sqrt{(x^2 + y^2)}$; BO autem eff $=\frac{ay-bx}{x}, \text{ ut ante; } \& OM = \frac{ay}{x}; AO^2 = a^2 H$ ita reducitur : $y^2 + y (x-b) + \frac{(x-b)^2}{4} = \frac{a^2 y^2}{x^2}; A = \frac{a}{x} \sqrt{(x^2 + y^2)}; & Q = \frac{(a-x)}{x}$ $\frac{(x-b)^2}{4} + \frac{bx^2}{a}; Fiat y + \frac{x-b}{2} = z; erit z^2 = \frac{\sqrt{(x^2 + y^2)}}{x} = \frac{bx^2}{x} \sqrt{(x^2 + y^2)}. Eft vero ex conditione Problematis: (a-x)} \sqrt{(x^2 + y^2)} = \frac{ay-bx}{x}$ $\frac{\sqrt{(x^2 + y^2)}}{x} \sqrt{(x^2 + y^2)} = \sqrt{(x^2 + y^2)} = \frac{ay-bx}{x}$ $\frac{ay}{x}; feu: a-x: x = ay - bx: ay; & X$ 1:

Problem 24: Given two lines AM, MB; select any point O on the line MB, construct the point R on the line AM such that AR is equal to MO; asking for the set of all intersections of two lines RB, AO.

Figure 1: Illustration to Problema 24

Solution according to Holfeld:

Let AN = x; NQ = y; AM = a; MB = b. First, from the similarity of triangles ANQ a AMO follows the relation x: y = a:(b+BO), i.e. $BO = \frac{ay-bx}{x}$. Applying the equality RA = MO from the assignment we get $RA = b + BO = b + \frac{ay-bx}{x} = \frac{ay}{x}$. From the assignment also follows the equalities RN = RA + x, i.e. $RN = \frac{ay+x^2}{x}$, and $RM = RA + a = \frac{ay+ax}{x}$. Then, the similarity of triangles RNQ a RMB implies the relation RN: y = RM: b. Substituting for RN and RM we get the form $\frac{ay+x^2}{x}: y = \frac{ay+ax}{x}: b$ that can be simplified as follows $y^2 + y(x-b) = \frac{bx^2}{a}$. Finally, completing the square on the left side we get the equation of the studied locus (see Fig. 2):

$$\left(y + \frac{x - b}{2}\right)^2 = \frac{\left(x - b\right)^2}{4} + \frac{bx^2}{a}.$$
 (2)

Ioannis Holfeld proceeded with modifications of (2) to get the equation $\frac{4az^2}{a+4b} = u^2 + \frac{4ab^3}{(a+4b)^2}$ of

a conic section in its reduced canonical form that he classified as a equation of hyperbola, which represents the set of intersections of lines *AO*, *RB*.

Figure 2: Graph of (2), *a* = 4, *b* = 5

TASK 1: Plot the equation (2) in GeoGebra as shown in Fig. 2. Use various values of a and b.

TASK 2: Create a dynamic model of "Problema 24". Inspect the locus of point Q. Be aware of the fact that Ioannis Holfeld did not solve the problem completely. Will you be more successful?

TASK 3: Modify the method of Ioannis Holfeld to find the rest of the locus that GeoGebra hopefully reveals you within the solution to TASK 2.