What Holfeld could not see in his solution

Ioannis Holfeld，Exercitationes geometricae，Prague，1773，p． 27 － 28.

Solutio：Sit $A N=x ; N Q=y ; A M=a ;$ $M B=b$ ；erit：$x: y=a: b \notin x$ ．Hinc $a y=b x-x^{2}$ ； qux eft xquatio ad Parabolam．Eft enim a y－ $\mathcal{F}^{\frac{1}{4}} b^{2}$
 erit $a y$ 古 $\frac{1}{4} b^{2}=z^{2}$ ．Ad a ，\＆$\frac{1}{2} b$ ，quare tertium proportionalem terminum；qui fit m ；eritque $a m=\frac{1}{4} b^{2}$ ； \＆：ay $a m=z^{2}$ ．Sit y \＆$m=u$ ；erit $a u=z^{2}$ ； quæ eft æquatio fimpliciffima ad Parabolam．

PROBLEMA 24.

32．Datis duabus rectis $A M, M B$ ，productaque ad libitum $M B$ in O ，fumatur a puncto A recta $A R$ xqualis O ；quaritur locus interfectionum rectarum $\boldsymbol{R} B, A O$ ．

Solutio：Sit $A N=x ; N Q=y ; A M=a ;$ $M B=b$ ；erit $x: y=a: b$ 出 B ；igitur： в $о=$ $\frac{a y-b x}{x}$ ．Hinc：$R A=b \mp \frac{a y-b x}{x}=\frac{a y}{x} ; \quad \&$ $R_{N}=\frac{a y \text { 世 } x^{2}}{x} ; R M=\frac{a y \text { 世 } a x}{x} . \quad$ Eft autem ： $\frac{a y \text { 胥 } x^{2}}{x}: y=\frac{a y \nleftarrow a x}{x}: b$ ．Nam：
$\boldsymbol{R} N: N Q=R M: M B . \quad$ Igitur ：$y^{2} \neq y$ $(x-b)=\frac{b x^{2}}{a}$ ．Qux rquatio ad fimplicifimam ita reducitur ：y^{2} 出 $y(x-b) \nleftarrow \frac{(x-b)^{2}}{4}=$ $\frac{(x-b)^{2}}{4} H \frac{b x^{2}}{a}$ ；Fiat $y \frac{x-b}{2}=z$ ；erit $z^{2}=$ $\frac{(x-b)^{2}}{4} \underset{a}{a} ; \& 4 a z^{2}=a x^{2} \not{ }^{2} a b^{2}-2 a b x$玉 $4 b x^{2} ; 4 a z^{2}-a b^{2}=x^{2}(a$ 玉 $4 b)-2 a b x$ 。 Sive：

Sive：$\frac{4 a z^{2}-a b^{2}}{a \Psi 4 b^{2}}=x^{2}-\frac{2 a b x}{a \mathscr{E} 4 b} \quad$ Sit $\frac{a b}{a \Psi+b}$
$=m ;$ erit：$\frac{4 a z^{2}-a b^{2}}{a \text { 出 } 4^{b}}=x^{2}-2 m x ; \&$
$\frac{4 a z^{2}-a b^{2}}{a \Psi 4 b}$ 世 $m^{2}=x^{2}-2 m x$ 円 $m^{2}=(x-m)^{2}$ ；
Fiat：$x-m=u$ ；erit $u^{2}=\frac{4 a z^{2}-a b^{2}}{a \text { 玉 }{ }^{2}}$ ※ m^{2} ；
$\& \frac{4 a z^{2}}{a \oiint 4 b}=u^{2} \Psi \frac{a b^{2}}{a \oiint 4 b}-\frac{a^{2} b^{2}}{(a \oiint 4 b)^{2}}=$
\boldsymbol{u}^{2} ※ $\frac{4 a b^{3}}{\left(a \oiint 4^{b}\right)^{2}}$ ；qux eft xquatio ad hyperbo－ lam；cujus defcriptio（facta fomper $A R=M O$ ）ab－ folvitur ductu rectarum $A O, R B$ ．

PROBLEMA 25.

35．Datis $A M, M B$ ，angulum rectum compre－ hendentibus，\＆fumpta quavis $B O$ ，ductaque $A O$ ， quæ fecetur in Q ea lege，ut fit $O Q: Q A=O B: O M$ ， invenire locum punctorum Q ．

Solutio：Sit rurfum $A N=x, N Q=y, A M=a ;$ $M B=b$ ；erit：$A Q=\sqrt{ }\left(x^{2} \Psi y^{2}\right) ; B O$ autem eft $=\frac{a y-b x}{x}$ ，ut ante；\＆$O M=\frac{a y}{x} ; A O^{2}=a^{2}$ ※ $\frac{a^{2} y^{2}}{x^{2}} ; A O=\frac{1}{x} V\left(x^{2} \Psi y^{2}\right) ; \& Q O=\frac{(a-x)}{x}$ $\sqrt{ }\left(x^{2}\right.$ 出 $\left.y^{2}\right)$ ．Eft vero ex conditione Problematis： $\frac{(a-x)}{x} \sqrt{ }\left(x^{2} \Psi y^{2}\right): \sqrt{ }\left(x^{2} \Psi y^{2}\right)=\frac{a y-b x}{x}:$ $\frac{a y}{x} ;$ feu：$a-x: x=a y-b x: a y ; \&$ a：

Problem 24：Given two lines AM，MB；select any point O on the line MB，construct the point R on the line AM such that AR is equal to MO；asking for the set of all intersections of two lines RB，AO．

Figure 1：Illustration to Problema 24

Solution according to Holfeld:

Let $A N=x ; N Q=y ; A M=a ; M B=b$. First, from the similarity of triangles $A N Q$ a $A M O$ follows the relation $x: y=a:(b+B O)$, i.e. $B O=\frac{a y-b x}{x}$. Applying the equality $R A=M O$ from the assignment we get $R A=b+B O=b+\frac{a y-b x}{x}=\frac{a y}{x}$. From the assignment also follows the equalities $R N=R A+x$, i.e. $R N=\frac{a y+x^{2}}{x}$, and $R M=R A+a=\frac{a y+a x}{x}$. Then, the similarity of triangles $R N Q$ a $R M B$ implies the relation $R N: y=R M: b$. Substituting for $R N$ and $R M$ we get the form $\frac{a y+x^{2}}{x}: y=\frac{a y+a x}{x}: b$ that can be simplified as follows $y^{2}+y(x-b)=\frac{b x^{2}}{a}$. Finally, completing the square on the left side we get the equation of the studied locus (see Fig. 2):

$$
\begin{equation*}
\left(y+\frac{x-b}{2}\right)^{2}=\frac{(x-b)^{2}}{4}+\frac{b x^{2}}{a} . \tag{2}
\end{equation*}
$$

Ioannis Holfeld proceeded with modifications of (2) to get the equation $\frac{4 a z^{2}}{a+4 b}=u^{2}+\frac{4 a b^{3}}{(a+4 b)^{2}}$ of a conic section in its reduced canonical form that he classified as a equation of hyperbola, which represents the set of intersections of lines $A O, R B$.

Figure 2: Graph of (2), $a=4, b=5$

TASK 1: Plot the equation (2) in GeoGebra as shown in Fig. 2. Use various values of a and b.

TASK 2: Create a dynamic model of "Problema 24". Inspect the locus of point Q. Be aware of the fact that Ioannis Holfeld did not solve the problem completely. Will you be more successful?

TASK 3: Modify the method of Ioannis Holfeld to find the rest of the locus that GeoGebra hopefully reveals you within the solution to TASK 2.

